Merkmalstransformation — ⇡ Variablentransformation … Lexikon der Economics
Gauß-Quadratur — Die Gauß Quadratur (nach Carl Friedrich Gauß) ist ein Verfahren zur numerischen Integration, das bei gegebenen Freiheitsgraden eine optimale Approximation des Integrals liefert. Bei diesem Verfahren wird die zu integrierende Funktion g aufgeteilt … Deutsch Wikipedia
Gaußpunkt — Die Gauß Quadratur (nach Carl Friedrich Gauß) ist ein Verfahren zur numerischen Berechnung von Integralen, das bei gegebenen Freiheitsgraden eine optimale Approximation des Integrals liefert. Bei diesem Verfahren wird die zu integrierende… … Deutsch Wikipedia
Gaußquadratur — Die Gauß Quadratur (nach Carl Friedrich Gauß) ist ein Verfahren zur numerischen Berechnung von Integralen, das bei gegebenen Freiheitsgraden eine optimale Approximation des Integrals liefert. Bei diesem Verfahren wird die zu integrierende… … Deutsch Wikipedia
Gaußsche Quadraturformeln — Die Gauß Quadratur (nach Carl Friedrich Gauß) ist ein Verfahren zur numerischen Berechnung von Integralen, das bei gegebenen Freiheitsgraden eine optimale Approximation des Integrals liefert. Bei diesem Verfahren wird die zu integrierende… … Deutsch Wikipedia
Legendre-Transformation — Dieser Artikel wurde auf der Qualitätssicherungsseite des Portals Mathematik eingetragen. Dies geschieht, um die Qualität der Artikel aus dem Themengebiet Mathematik auf ein akzeptables Niveau zu bringen. Bitte hilf mit, die Mängel dieses… … Deutsch Wikipedia
Legendretransformation — Anschauliche Darstellung der Legendre Transformation Die Legendre Transformation (nach Adrien Marie Legendre) gehört zu den Berührungstransformationen und dient als wichtiges mathematisches Verfahren zur Variablentransformation. Ziel der Legendre … Deutsch Wikipedia
Regel von L’Hospital — Mit der Regel von (de) L’Hospital (gesprochen [lopi tal], auch L’Hôpital geschrieben, oder als l Hospitalsche Regel bezeichnet) lassen sich Grenzwerte von Funktionen, die sich als Quotient zweier gegen 0 konvergierender oder bestimmt… … Deutsch Wikipedia
Riemann'sche Xi-Funktion — Die Riemannsche ξ Funktion in der komplexen Zahlenbene. In der Mathematik ist die riemannsche Xi Funktion eine Transformierte der riemannschen Zeta Funktion. Ihre Nullstellen entsprechen dabei ausschließlich den nichttrivialen Nullstellen der… … Deutsch Wikipedia
Riemannsche Xi-Funktion — Die Riemannsche ξ Funktion in der komplexen Zahlenbene. In der Mathematik ist die riemannsche Xi Funktion eine Transformierte der riemannschen Zeta Funktion. Ihre Nullstellen entsprechen dabei ausschließlich den nichttrivialen Nullstellen der… … Deutsch Wikipedia